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§1. STATEMENT OF SCIENTIFIC WORK DURING THE REPORTING PERIOD.

Let be the N dimensional real euclidean space,

x = .xi I x2 ,. , N) a generic vector, the superscript

T means transpose, <, > is the euclidean scalar product and

I the euclidean norm.

We have considered the linear programming problem;

that is:

Problem 1 (Linear programming) Given b, c e r and A an mxW

matrix (m <N), solve the following minimization problem:

minimize <c, 

for x such that

x O

Ax - b > 0

where x N 0 means that each component of x is greater or

equal to zero and similarly Ax - b . 0.

The Linear programming problem is transformed into a

Linear Complementarity Problem using the Lagrange multipliers

as follows:

Let
T

-c Io -A T
- - -c\

,- b \A 0

Problem 1 becomes
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Problem 2 (Linear Complementarity Problem). Find z sucl that:

Az - b >

Finally the Linear Complementarity Problem is trans-

formed into a global optimization problem via the transforma-

tion given at page 1 of the Fourth Periodic Report.ln this way the li-

near programming problem is reduced to the problem of finding

t1'e minimizers of a function F(z). 0 such that F = 0 at the

minimizers.

If the original linear programming problem has a

unique solution the corresponding minimization problem has

a unique global minimizer, but unfortunately the function F

may have a rather complicated set of local minimizers inclu-

ding "cilindrical valleys". A direct application of a local

minimization techniques such as GRACON (see Fourth Periodic

Report) is unsuccessful. So that several modified algorithms

have been considered the most promising ones are:

(i) A perturbation method. Let ER. ,J) , the matrix A is

substituted with A (F.) = A+kI where I is the identity ma-

trix. The idea is to find the solution z(E) of the prob-

lem correspondent to the ra.trix A(f) and to let C go to

zero. If F goes to zero too quickly the conjugate gra-

dient method may remain trapped in a local minimizer, if

goes to zero too slowly the computational cost becomes
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excessive. In Table 1 the results obtained with this me-

thod are indicated with DOD4 DOD;

(ii) Avoiding the cilindrical valleys. When the conjugate gra

dient method remains trapped in a cilindrical valley the

minimization procedure is stopped, the direction of the

valley is computed and a large step is taken in the di-

rection of the valley in the "descending" direction, fi-

nally the conjugate gradient minimization algorithm is

started again. In Table 1 the results obtained with this

method are indicated with DOD4 DOD9.

The test problems considered in Table 1 have been con-

structed following the suggestions of De Leone and Manga-

sarian (see Appendix 2). The numerical experience has been

obtained on a VAX 8530 with VMS 4,5 Operating System.
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TABLE 1

DOD4 DOD 00D4 D009

M NFEV T M NFEV T

50 694 2". 97 50 315 2" .24

100 1502 7".87 100 716 4".21

500 4176 1'.35".08 500 2154 43".44

1000 9620 7'. 4".74 1000 1333 55".39

5000 12548 46'.26".80
h

10000 14241 1 .54 .18" .51

Legenda

M dimension of the complementarity problem (z C-

NFEV number of function and gradient evaluation of the func-

tion that must be minimized
1h

T running time on the VAX 8530 (Example 1 .54'.18".51 = 1

hour 54 minutes, 18 seconds, 51 seconds/100.

Tolerance required: Final function value < 10
- 20

Finally some geophysical application of linear pro-

gramming has been considered (see Appendix 1) since in our

opinion the random generated test problems are not completely

satisfactory.
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§2. RESEARCH PLANS FOR THE IMMEDIATE FUTURE.

In the immediate future we plan to pursue the fol-

lowing objectives:

(i) study Karmarkar and Renegar methods for linear program-

ming in the context of continuation methods;

(ii) study the nonlinear complementarity problem.
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§3. ADMINISTRATIVE ACTIONS.

None.



§4. Appendix 1: L. Misici, F. Zirilli: "The inverse gravi-

metry problem: An application to the northern San Fran-

cisco craton granite" submitted to 3. of the Geological

Society London.



THE INVERSE GRAVIMETRY PROBLEM: AN APPLICATION

TO THE NORTHERN SAN FRANCISCO CRATON GRANITE*

Luciano Mlsici
Dipartimento di Matematica e Fisica
Universitai di Camerino

62052 Camerino (MC) Italy

Francesco Zirilli
Dipartimento di Maternatica 'G. Castelnuovo'
Universitai di Roma 'La Sapienza'

00185 Roma Italy

Abstract

From the knowledge of the anomalies of the gravitational field we reconstruct the mass density
distribution in a large region of the state of Bahia (Brazil).This inverse gravimetry problem has
been translated in a linear programming problem and solved using the simplex method. Both two
and three dimensional models have been considered.

1. Introduction

In recent years a great deal of attention has been attracted by the study of several inverse
problems in science and technology. In particular in science we mention the inverse problem of
quantum mechanics, that is the reconstruction of a potential from its scattering data [1I and the
famous problem "can you hear the shape of a drum", that is the reconstruction of the shape
of a region in Euclidean space from the knowledge of spectral properties of suitable differential
operators [21. In technology we mention the radar technology that is the use of electromagnetic
waves to detect not visible objects, the sonar and ecography technology that is the use of acoustics
waves to detect properties of regions that are not directly accessible because they are underwater
or inside the human body.

The research reported in this document has been made possible through the support ard sponsorship of the

U.S. Government through the European Research Office of the U.S. Army under contract n. DAJA 45-BG-C-002

at the University of Roma "La Sapienta" and of the Ministero Pubblica Istrutione under contract 60% 1087 at the

University of Camerino.
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There are many inverse problems in geophysics both of fundamental interest such as the
reconstruction of the Earth structure from knowledge of elastic , gravimetric and geomagnetic

data or of more applied nature such as the use of similar data in geophysical prospecting to

localize gas or oil.
In this paper we consider an inverse problem in gravimetry. Let z, y, z be cartesian coordinate

in the three dimensional space, given a mass density p(z, y,z) in a certain region 0, the direct
problem of gravimetry consists in finding the gravitational potential V(x, y,z) generated by p,

that is in solving the Poisson's equation:

AV--= -41rfp in 0 (1.1)

where A = + 8 + 0 is the laplacian, f = 6.67. 10-cm3 .g/sec 2 is the gravitational constant

ard suitable boundary conditions on the boundary of 0, 80f, are specified. Vice versa given the
gravitational potential V(z, y, z) in a certain region 0, the inverse gravimetry problem consists in
finding the mass density p(z, y, z) that generates V, that is in solving the inverse Poisson's equation

A-1 Vp= - in n (1.2)

where A -
' is the inverse laplacian with the appropriate boundary conditions on l.

Almost all inverse problems and in particular the inverse gravimetry problem are ill pcsed,

that is, to an arbitrarely small perturbation of the data V can correspond an arbitrarely large

perturbation of the solution p.
The great difficult cf solving the inverse gravimetry problem in practical situations is due

to its ill posedness since the values of the gravitational field, that is the data, are obtained from

experiments and so are affected by errors. In order to avoid this difficulty and restore a well
behaved dependence of the solution p from the data V it is very useful to introduce some a priori

constraints that o should satisfy.
In [31, [4] [51 using these ideas the inverse gravimetry problem has been reduced to a linear

programming problem in a way that we will see later. In this paper using this linear programming

formulation of the inverse gravimetry problem we study the northern San Francisco craton granite
in Brazil on the basis of measurements of the residual Bouguer anomaly of the gravitational field

taken from [6] and (71, see Fig.l. From these data we reconstruct a two dimensional section of the
mass density along the BB' segment of Fig.l. This section is about 270Km long and 20Kn deep,
see Fig.3. Moreover we reconstruct a three dimensional section of the mass density in th- region
bounded by the dotted rectangle of Fig.1. This section on the surface of the Earth is a rectangle

of about 240Km x 189Km and is about 20Km deep, see Fig.4.
We have found that in the center of this three dimensional region there is a body of granite

of mass density p - 2.57g/cm3 while the average mass density of this region is p = 2.67g/cm 3 .

This body in the BB' segment is surfacing for about 30Kn and is about 67Km long on its bottom
which is about 16Km deep, see Fig.3. These results are confirmed by the three dimensional

reconstruction of p (Fig.4) and they are in good agreement with the results obtained by Ussami
and Bott in [6]. The granite body found by Ussami and Bott in [6] is a little bit smaller than ours.
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In section 2 we describe our mathematical model and we reduce the inverse gravirnetry problem
to a linear programming problem. In section 3 we present the data that we have used and the
results obtained in the northern San Francisco craton granite (Brazil) using the mathematical
model described in section 2.

2. The Mathematical model

Here we will follow the work of Safon, Vasseur and Cuer [4], it is well known that, using the
Green's function G(z, y, z) [81, the equation (1,2) can be reformulated as an integral equation as
follows

f G(z, Y, Z, z', Y', Z')p(z', y', z')dz'dy'dz' = V(z, y, z) (2.1)

Let us cut t'.e domain fl in a great number N of cubic domains w,, the function p(x, y, z) will be
approximated on each cube w,. by a constant p. and the Green's function C will be approximated by

amatrix =((gjj)); i= 1,2,...,M; j=1,2,.,N. Finally letV , i= 1,2,...,M (M< N)
be the measurements of the gravitational field V(x,y,z) in z,, /,,z, that belongs to the cubic

domain w,,i = 1,2,- -,M. So that equation (2.1) can be discretized as follows:

N

Z =p, =V, , i = 1,2,...,M (2.2)
3=1

where g,3  f L, G(z,,y,, zi,z', y',/z')dz'dy'dz'. In general is natural to assume that the data V,
are available only on cubic domains w, that have one side on the accessible surface of the region
fl, so that M < N, see Fig.4 and the linear system (2.2) is underdetermined. Moreover since the
data V , i = 1,2,.. ,M are known only with a certain error c, > 0 , i = 1,2,-, M we substitute

the system of linear equatior- (2.2) with the system of linear inequalities

N

V- < gi;p, V + c ; i= 1, 2,...M (2.3)

= 1

The mass density p is greater or equal to zero, so that we may impose

p, > 0 , j = 1, 2, .. ,(2+4)

or more realistically in a geophysical problem

p-:S p3 < p" , j =1,2,...,N (2.5)

where p7'- and p"d , j = 1,2,. ., N are the minimum and the maximum values for p, assigned

on the basis of physical intuition. Both the linear system (2.2) or the more realistic system of
inequalities (2.3), (2.5) if compatible have in general an infinite number of solutions.

In order to restore uniqueness we introduce a functional to be optimized on the set of points
satisfying (2.3), (2.5), that is

L

J k VI(W.(26
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where vol(wk,) is the volume of the cube wi,, so that J is the total mass of the body 0 or of some

part of it.
The linear programming problem that we consider is the following one: minimize the functional

J given by (2.6) subject to the constraints (2.3), (2.5).

In section 3 we will also use a two-dimensional model, in this case we assume that the region

0 has as infinite extension in the horizontal z coordinate and that p is a function of z, the vertical
coordinate, and y only. Reasoning as in the three-dimensional case with an appropriate Green's

function G and data V i = 1,2,. ,M it is easy to obtain a linear programming problem

analogous to the one obtained for the three-dim-nsional model given by (2,3), (2.5), (2.6).

3. Results and conclusions

Here we will consider two special applications of the method described in section 2. That is a

two dimensional vertical section and a three dimensional slice of a large region in the state of Bahia

in Brazil. In our computations the gravitational anomaly is measured in rgals and the distances

in Km. The gravitational anomalies, that is the residual Bouguer anomalies, are reported in Table

1 for the three-dimensional problem and in Fig.2 for the two-dimensional problem. Moreover we

assume that the average mass density in the regions considered is Po = 2.67g/cms. The data of table

I and Fig.2 have been regularized in order to avoid numerical instability due to the ill posedness

of the problem. In particular the data of Fig.2, that are taken along the BB' segment of Fig.l,

are highly irregular outside the central region of Fig.2 where the maximum of the gravitational

anomaly is attained so that, as shown in Fig.2, the data have been regularized outside this region.

For the three-dimensional case the numbers in bold face of Table I are real gravitational anomalies,

these are the data taken in the rectangle AA'C'C of Fig.i, while the numbers not in bold face in

Table I, that is the data of the region between the dotted rectangle and AA'C'C of Fig.i, have

been regularized solving some suitable direct problem. In order to choose the functional J given

by (2.6) we have used an empiric formula [91 that estimates the maximum deepness Az of a body

that generates a certain gravitational anomaly V, , i = 1,2, M on the surface, that is

Az = 0.65 max. IV. 1 (3.1)
max, V, (3.1

where V is a numerical approximation to the gradient of V, expressed in mgals/Km. With our

data we obcain tiz _ 16Km. So that on the basis of this estimate for Lz and of the conclusion of

[6) that the body is surfacing we have chosen

J = E P, VOIW2  (3.2)
(, I OKm<,:516K-}

In particular in the two-dimensional case along the BB' segment of Fig.l we have considered 37

data points taken on the surface at a distance of 7.5Km one from the other. Moreover we assume

that the body we are looking for is localized in the region z < 2OrKm. So that the rectangle we

are working on, as shown in Fig.3, is (7.5Km x 37 = 277.5Km) x 20Km and has been divided in

small rectangles w: , j = 1, 2,..., 370 where w. is 7.5Km x 2Km (see Fig.3) and j iuns from left
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to right and from top to bottom from I to 370. The bound (2.5) assumed on p , = 1, 2,- -,370

have been chosen so that the feasible region is as small as possible.

The gravirnetric problem that has been solved for the two dimensional case is the following

one: find the values of p3 , j = 1, 2,.,370 that minimize

206

J : ow, (3.3)

subject to

370

Vi - (i 5 F_,ijP, 5 V + C ; i= 1,2,- '-,37
j= 1

2.57g/cm3 < pi < 2.69g/cm 3  1 < j _ 37 (3.4)

2.57g/cmn3 
< p, 5 2.675g/cm3  ; 38 < 74

2.57g/cm 3 
< P, <- 2.67g/cm 3  75 < i < 370

where V = . + -', with 8, = 2.67g/cm3 E = I g,, and -I. the anomalies shown in Fig.2 while
Ci = 0.05-"i. This linear programming problem (3.3),(3.4) has been solved using the FORTRAN
package [10] and the solution found is shown in Fig.3.

In the three dimensional problem the dotted rectangle of Fig.1 is of dimension 240Km in the

BB' direction (V direction) times 189Km in the AC direction (z direction). This dotted rectangle
has been divided in 16 x 7 = 112 small rectangles of dimension 15Kn in the BB' direction times
27Km in the AC direction, the gravitational anomaly data -y are taken in the central points of
these small rectangles (xi,yi,0) , i = 1,2,...,7 , j = 1,2,...,16.

Y 11 Y2 I Y3 Y)4 I 1)S I16 7 I ) YS 0 Y )1 YIO 11 Y112 1)13 1)14 1)15I 1ie
0.1 0.2 0.3 0.54 -1.41 -2.69 -4.57 -5.34 -4.57 -2.69 -1.411-0.82.0.5-0.3, 0.2

2 -0 23 -0.3! 0.4 .77 -1.31 -9.60 .17.65 -22.65 -48.7 37.6 -23.04 -2.9 1.37 0.7 0.4.0.3
,-0.2( -0.3 0.5 0.95-1.7 18.2 .28.98 40.1 -53.1 35.14-14.40 .3.7 -1.73 0.9 0.5E0.3
r-0.21 0.4 0.6 1.01-1.83-26.88 40.32 57.6( 57.6 32.6 -5.76 3 1.83 1.01 0.61 0.4

5-0.2 0.3 0.5 0.9k17 2. 230 42.0 - 52.8 39.3( 22.08 3.7 -1.73 0.9 0.58 0.3
r6.0.230.3" .0.4 0.77.1.31 2.69 -5.76 K26.5 -48.0 46.08-38.04 2.9 1.37 0.77.0.48-0.3

7 .0.1 0.2-0.3 0.54.0.84 -1.41 -2.69 -4.57 -5.34 -4.57 -2.6 -0.82 0.5030.2

The parallelepiped considered is the one of base the dotted rectangle of Fig.1 and deepness 20 Kn.

This parallelepiped has been divided in 7 x 16 x 5 = 560 small parallelepipeds w ,j = 1,2,.-,560
of dimensions 27Km x 15Km x 4Km in the z, y, z directions respectively (see Fig. 4) and j runs

as shown in Fig. 4.

The gravimetric problem that has been solved with the FORTRAN package [10 is the following
one: find the values of p3 , j = 1,2,. --,560 that minimize J given by (3.2) subject to:
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660

2.579/cm3 < P3 < 2.697g/cm3  1 < . 112

2.57g/cm 3 < pi !_ 2.672g/cm 3  113 -. j ! 224

2.57g/cm3 < p, < 2.679/cm 3  225 < j < 560

where c, and V, = 6 + -y, are defined as in the two-dimensional case. The results obtained are

shown in Fig.4.
As shown in Fig.3 for the two-dimensional problem we have found a granite body about 16Km

deep with density 2.57g/cM3 , that is O.Ig/cm 3 smaller that the surrounding medium, this body
is about 30Km long on the surface and 67Km long on the bottom. The results of the three-
dimensional study, shown in Fig.4, confirm the results of Fig.3. This results are in qualitative
agreement with the ones obtained by Ussani and Bot in 16].
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FIGURE CAPTIONS

A large region in the state of Bahia (Brazil) is considered between 40-44 degrees of
longitude and 10-15 degrees of latitude. The iso-Bouguer anomaly lines are shown. The

BB' direction is the one considered in the two-dimensional problem. The dotted rectangle
is the region considered in the three-dimensional problem. In the three-dimensional

problem measured data have been used in the AA'C'C rectangle, regularized data have
been used in the remaining region.

fir.2 The measured residual Bouguer anomaly in the BB' segment and the regularized one is
shown.

Fiz.3 The mass density distribution obtained from the data of Fig.2 solving the linear
programming problem (3.3),(3.4) in a vertical scction, 20Km deepalong the BB'
direction is shown.

The mass density distribution obtained from the data of Table 1 solving the linear
programming problem (3.2),(3.5) is shown.
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§5. Apendix 2:
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Serial and Parallel Solution of Large

Scale Linear Programs by Augmented

Lagrangian Successive Overrelaxation' )

R. De Leone & 0. L. Mangasarian

Computer Sciences Department

University of Wisconsin

Madison, Wisconsin 53706

Technical Report #701

June 1987

Abstract. Serial and parallel successive overrelaxation (SOR) methods are proposed for

the solution of the augmented Lagrangian formulation of the dual of a linear program. With

the proposed serial version of the method we have solved linear programs with as many as

125,000 constraints and 500,000 variables in less that 72 hours on a MicroVax 11. A parallel

implementation of the method was carried out on a Sequent Balance 21000 multiprocessor

with speedup efficiency of over 65% for problem sizes of up to 10,000 constraints, 40,000

variables and 1,400,000 nonzero matrix elements.

Key Words: Linear programming, SOR, augmented Lagrangian, parallel algorithms

Abbreviated Title: SOR Solution of Linear Programs

) This material is based on research supported by National Science Foundation Grants

DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants

AFOSR-86-0172 and AFOSR-86-0255.
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1. Introduction

In [8, 9, 10, 12, ] successive overrelation methods are proposed for solving the dual of

the problem of finding the least 2-norm solution of a linear program. This leads to an

exterior penalty formulation of the dual of the original linear program with the interesting

property that the penalty parameter need not approach zero in order to obtain ai. -Xact

solution of the primal linear program [1, 14]. Thus the penalty parameter need only be

less than a certain threshold value in order to obtain an exact solution to the primal linear

program. However, the penalty parameter must approach Lero in order to obtain a solution

to the dual problem. Although this approach has been used effectively in conjunction

with successive ov,.rrelaxation methods both on serial [10] and parallei machines [11. i ],

we propose here the use of an augmented Lagrangian on the dual problem instead of

an exterior penalty function in order to alleviate the twin difficulties of determining the

threshold value of the penalty parameter required for an exact primal solution, and the

need for the penalty parameter to approach zero in order to obtain a dual solution. The

first proposal for using an augmented Lagrangian formulation for solving linear programs

was made in [22]. In [18] Polyak and Tretiyakov made the remarkable discovery that after

a finite number of steps of the augmented Lagrangian algorithm, an exact solution to

the primal and dual linear programs is obtained. In [3] Golshtein proposed a projected

Gauss-Seidel method in conjunction with an augmented Lagrangian formulation and gave

computational results for linear programs with sizes up to 352 variables and 166 constraints.

No convergence proofs of the projected Gauss-Seidel method wrs given in [31, nor of the

closely related iterative method of Syrov and Churkreidze in [1S]. We propose here the

use of a projected successive over-relaxation method in conjunction with an augmented

Lagrangian formulation. The convergeace of the proiected SOR method established in

[7] is general enough to cover both a serial and a parallel implementation of the method.

Since SOF methods are inherently serial in ni fur2, their parallelization is not a routine

matter. In [11, 13] two related methods were proposed for the parallelization of SO-

methods. The more recent method [13] utilizes an unreduced relaxation factor interval of

(0, 2) which we shall employ here with an augmented Lagrangian algorithm for the dual

linear program.

The paper is organized as follows. In Section 2 we give the necessary theoretical
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background and convergence results for the proposed augmented Lagrangian method ap-

plied to the dual linear program. In Section 3 we describe a serial SOR implementation

of the method and establish its convergence. In Section 4 we describe our parallel SOR

implementation and in Section 5 we present computational results for both the serial and

parallel methods.

We briefly describe our notation now. For a vector z in the n-dimensional real space

R' , + will denote the vector in R ' with components (z,), = max {x,, 0}, i = 1 ... n.

The scalar product of two vectors z and y in R' will be simply denoted by zy. For

1 <p < oo, the p-norm (x il,) /
P of a vector in R' will be denoted by Iz~j . For the

2-norm the subscript 2 will be dropped. R" will denote the nonnegative orthant or the set

of points in R' with nonnegative components, while R"' will denote the set of all rL x n

real matrices. For A E R " , .T will denote the transpose. .4, will denote the ith row,

A,, the element in row i and column j, and for IC {1 .... m}, J C {1'..... n}, .-1 wir l

denote the submatrix of .4 with rows Aj, i E 1, while Al j will denote the submatrix of .-I

with elements Ai, i E I, j E J. Similarly for z4 Rn and It C {1.... n}, xj, will denote

z,, i E It. The set {Ii,12 .... IK} is said to be a consecutive partition of {1..n} if

it is a partition of {,. n} such that i < j for i E It, j E Ie+i and e = 1 . k- 1.

Here and throughout the symbols : = and =: denote definition of the term on the left and

right sides of each symbol respectively.
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2. Theoretical Background

We consider the linear program

(2.1) min cx subject to Ax > b, x > 0

where c E R ' , bE R m and A E R "
xn and its dual

(2.2) max bu subject to v=-ATu+c>_0(U,U)>

For simplicity we exclude trivial constraints with Ai 0. In [8, 9] the exterior penalty

problem associated with the dual problem (2.2)

(2.3) max ebu - 1 JIATu +v -CI12
(U,V)>o 2

was solved by an SOR procedure for a sufficiently small value of the penalty parameter

c to obtain (u(c), v(c)). The unique least 2-norm solution i of the linear program (2.1)

was obtained by using the equation

(2.4) x() = (ATu(E) + v(C) _ c)

which relates an optimal solution (u(e), v(e)) of the dual penalty problem (2.3) and the

unique solution x(e) of the corresponding quadratic primal problem [51

(2.5) min cz + C xz subject to Ax > b, z > 0

In particular it follows [14] that the least 2-norm solution E of the linear program (2.1) is

related to x(e) of (2.4) by

(2.6) ± = z(c) for C E (0, t] for some f > 0

Thus the penalty parameter E of the dual penalty problem (2.3) is the perturbation param-

eter of the perturbed primal problem (2.5). In order to avoid possible difficulties associated

with determining the threshold value E we consider instead of the exterior penalty problem

(2.3) the augmented Lagrangian associated with the dual linear program (2.2)

(2.7) L(u, v, x, -y) bu - 2 -YJ'7 u + v Cu2 - x(A'u + v - c)
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It is a standard resul [6, 2, 19] that for any y > 0, a primal-dual solution (i, , z') of

(2.1)-(2.2) is equivalent to a stationary point of the following saddlepoint problem of (2.7):

Find an (i, , ) E R" x R' x R' such that for all z E R' and all (u,v) E RC x R'+,

(2.8) L(u, v, , r) _ L(,, , i, -y) < L(fi, 6, z, ,-)

The standard augmented Lagrangian algorithm [2, 19] consists of a maximization step in

the (u, v) space R' x R' followed by an unconstrained gradient descent step in the x

space R ' . In particular we have the following.

2.1 Augmented Lagrangian Algorithm

Start with any zO E R'. Having Z i determine x'+ 1 as follows

(a) L(u',v',x',7') = max L(u,v,z,')
(U'U)>0

(2.9) x V L(uRVaX, - 1
(b) Y4 -(Au'+ V -c)

where {-y'} is any bounded sequence of positive numbers.

For this iterative linear programming algorithm Polyak and Tretiyakov [18] have given

the following important finite convergence theorem.

2.2 Augmented Lagrangian Algorithm Finite Termination Theorem [18]

For any bounded positive sequence {7'}) and X' E R, Algorithm 2.1 is finite, that is

there exists an integer k such that (Xk
, 
uk, Vk) solve the dual linear programs (2.1)-(2.2).

Furthermore for each x° there exists a j > 0 such that for 0 < y0 < ,, the method will

terminate in one step, that is (x' , u', v1) will solve the dual linear programs (2.1)-(2.2).

.Note that in the above theorem, two exact maximizations ov-, r the (u, v) space R' x

R. are required in order to obtain (zi+lu'+1 ,va+l) from z'.

We note that since by duality theory [5]

(2.10) max L(u,v,x, )=min {cz+ - z > j zi>z0) =:(,.U)_>o Z 2-1 - -

the Augmented Lagrangian Algorithm 2.1 is equivalent to the following gradient method

applied to the proximal point function (x)

-i - -= X )= Prox (x')

(2.11) where Prox (x') is the solution of

min (cz + IIZ - X'11 Az > b z > 0}
," 2 " "
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Bertsekas [1] and Rockafellar [21] also obtain finite termination for (2.11) from proxima

point theory considerations for the linear programming case.

With this background we are prepared now to state and prove the convergence of our

serial and parallel SOR algorithms.
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3. Serial Successive Overrelaxation Algorithm

The proposed serial algorithm consists of applying the projected SOR method of f7T to

the maximization step (2.9a) of the Augmented Lagrangian Algorithm 2.1 for a decreasing

sequence of positive numbers {Jy}. It follows from the Finite Termination Theorem 2.2

and a theorem of Pang [16, Theorem 3.11, that for any z' the projected SOR method

will generate a sequence of points converging to an zi" that solves the primal linear

program (2.1), provided that -f' is sufficiently small. There are no easily implementable

and theoretically justifiable ways of determining how to choose Y' sufficiently small [20, 41,

however we shall prescribe some computationally effective ways for doing that.

The serial projected SOR method has been proposed [7, 9[ for solving the quadratic

minimization problem

1
(3.1) min O(z) := min I zMz + qz

Z> X>O 2

where M E R:xk is symmetric and positive semidefinite. This is precisely problem (2.9a)

of Algorithm 2.1 if we make the identifications

(3 2) M : = " [ ( q := Y- & , I [ u
L C 

z:
The projected SOR algorithm consists of the-following.

Z,'' = (Z'w,(V2 9(z'))T.IV 9(z+,. t+1 z. )(3.3) ) Z j ,Z,.+

E (0, 2), j . k

More specifically for O(z) - 4 zMz + qz we have the following.

3.1 Serial SOR Algorithm for min zMz + qz
Z>o

Choose z' E Rk, w E (0, 2). Having zt compute z' + ' as follows

3- 1 k

Z +1 = (Z, - WML'- Z' + 1 vf1 zt

(3.4) t=i qi))+for 1> I

j l..k
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We are ready to state and establish the convergence of our augmented Lagrangian

serial SOR algorithm.

3.2 Augmented Lagrangian Serial SOR Algorithm

Let {7) .[ I, for some x > 0, let {P} I 0 and let z' E R". Having z' determine

x + 1 as follows:

(a) Apply the Serial SOR Algorithm 3.1 to solve (2.9a) with the identifications (3.2), and

let (ui(t), vi(t)) be the t iterate of this SOR algorithm. Stop if for some t = t, the

following inequality is satisfied.

U'(t)V.L(u'(t), v'(t), xi, -yf) + v'(t)V.,L(u'(t), u'(t), x', .')

(35) + (VuL(u,(t), v'(t), z', -') + (VL(ui(t), v#(t), x', 7')) < 6,

(b) Set x i+ 1 = :i(t i ) where

(3.6) z'(t) := z' + I (ATus(t) + vi(t) _ c)

3.3 Augmented Lagrangian Serial SOR Convergence Theorem

Let { -} 1 > 0 be a =.ufficiently rapidly decreasing sequence of positive numbers

and sufficiently small. Then either

(a) For some integer k, the sequence {zk(t)} converges to an tk that solves the linear

program (2.1), or

(b) For each subsequence of {(Xi, u'(t), v'(t'))} converging to some (., ,f), the cor-

responding subsequence {xi+ 1 = x'(t')} converges to an i such that i solves the

linear program (2.1). If i = 2, then (5,tJ) solves the dual linear program (2.2).

Proof Either the inequality (3.5) of the algorithm is satisfied a' each iteration i for some

t' or not. Accordingly we have the alternatives (b) and (a) below respectively.

(a) For some iteration i = k the inequality (3.5) is never satisfied. Hence by Pang's

Theorem 3.1 [16], since L(u, V, zk, .yk) is by duality theory bounded above for (u, V) >_

0 by cz + -y jX_ kj' for any x> 0 such that Ax > b, it follows that the sequence

(3.7) { k(t)} := (zk +ATuk(t) +t k(t) - c  t(37 {kt }: , t = 0,1,2,..
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where t is the SOR iteration index, converges to a vector ik defined by

k k A70i + f~k _ C(3.8) P: += AT6 +

for some (5k, Ok) which solves max L(u,v, xk ,7,k). Note however that {uk(t), Vk(t)}
(UV)>0

need not converge to (i k , f6 k ). If .fk is sufficiently small (and this is what is meant by

requiring that {7y} decreases sufficiently rapidly) it follows by Theorem 2.2 that zk + =

2 k , is a solution of the primal linear program (2.1). (Note that (0*, 0) need not be a

solution of the dual linear program (2.2). To obtain such a dual optimal (k 5k) we need

to solve min L((u,v,2k, yk) exactly. See Corollary 3.5 below.)(U,V)>0

(b) If inequality (3.5) holds for each i for some t, then since {6} 1 0 and {-'} l

> 0, we have that for any subsequence of { (x, u(t), v'(t')) } converging to some

( 0,6,o), the point (ii,6) solves the problem min L(u,v,2, ;) (because {}1 0),
(u,v) >0

and moreover the corresponding subsequence {z' + } defined by (3.6) and part (b) of

Algorithm 3.2 converges to an i defined by

(3.9) : AT + -c

If 5 is sifficiently small, then it follows by Theorem 2.2 that i solves the linear program

(2. 1). If in addition i = f, then (ii, 0) is feasible for the dual linear program (2.2) and is

also optimal because buT = ci. I

It is useful to point out that when the sequence { (u'(t), v'(t)) } of Algorithm 3.2 is

bounded then it has an accumulation point and by Theorem 2.1 f7), each such accumulation

point satisfies the optimality conditions for (2.9a). Consequently for each i inequality (3.5)

of Algorithm 3.2 is satisfied after a finite number of steps of part (a) of the algorithm.

However by Theorem 2(ii) of [9] we have that if the linear program (2.1) satisfies the Slater

constraint qualification, then the sequence {(u'(t), v'(t)) } is indeed bounded. Therefore

we have the following.

3.4 Augmented Lagrangian Serial SOR Convergence Corollary

Let the linear program (2.1) satisfy a Slater constraint qualification, that is Ax > b

for some z > 0. Then Theorem 3.3 holds with outcome (b).
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Another useful observation follows from the fact [18, Lemma 11, [19] that minimizing

the augmented Lagrangian L(u,v,z,-y) with an optimal value of r and any y > 0 gives a

solation to the dual linear program (2.2). Hence we have the following.

3.5 Dual LP SOR Solution Corollary

Under the assumptions of Theorem 3.3 a solution to the dual linear program (2.2) can

be obtained for either outcome (a) or (b) of Theorem 3.3 by solving respectively

(a) min L(u, v,tk,)
(u,v)>0

or

(b) min L(u,v,i, -)(U'V)>O

We note immediately that we have left open the procedure by which the sequence

{ yi} is decreased. This is an inherent theoretical difficulty that arises when using inexact

minimization in the subproblems of proximal point or augmented Lagrangian algorithms.

Thus the approximate minimization criteria of [21, Criteria A, B, A', B'] are not imple-

mentable for our problem, while the assumptions of [2, Section 2.5] are not verifiable for our

problem. Computationally we have overcome this difficulty by using the following scheme,

often used for updating the penalty parameter in augmented Lagrangian algorithm

( . ) if = I +- -ifll 
<5 PH1 - ,- 11 0 < '" < 1

V_( otherwise, 0 < v < 1

This scheme works effectively for the solution of very large sparse linear programs as our

computational results indicate.
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4. Parallel Successive Overrelaxation Algorithm

The key to our parallel SOR algorithm is the use of the parallel gradient projection

SOR (GP-SOR) that we proposed in [131 for the solution of (3.1) and which we outline

below. Partition the matrix 11 of (3.1) into r contiguous horizontal blocks as follows:

.Mr,

(4.1) M, =: .
M M12,

LMI,
where the blocks MI, correspond to the variables zri, and {I1, I,} is a consecutive

partition of {1,2,... , k). Now partition Nl, as follows

(4.2) M =: [MIj ,I M,,]

where Ij is the complement of 1, in {1,2...k}. Thus Iil, is a principal square

submatrix of Al with elements M't, s E Ij and t E Ii. We further partition M, I, into

the sum of its strictly lower triangular part L,, , its diagonal part D121 , and its strictly

upper triangle part U,,, as follows

(4.3) 11, , =: L, + D,,r, + Ui,,

Now define a block diazonal matrix K as follows

(4.4) K: = "1

where each L, r, is the strictly lower triangular part of 1/, fi. An SOR algorithm can

now be performed for each row block Ij, j = 1. r, simultaneously, that is in parallel.

Note that the block diagonal matrix K replaces the traditional strictly lower triangular

matrix of the serial SOR. Specifically we have the following.

4.1 Parallel GP-SOR Algorithm for (3.1)

Let {1, 12,. ,I1) be a consecutive partition of {1,2,... , k}, let E be a positive

diagonal matrix in Rkxk and let z' > 0. For i = 0, 1, 2,..., do the following



Direction Generation Define the direction

pl1(Z,) - z,

(4.5) d'; = P(z') - z':
\PI,( -zi  ZIo

such that p(z') satisfies

(4.6) pr,(zi) = ( j -wEi,(lIz' +qi, + Li,r,(Pr,(z') - j+ .

where L > 0 is chosen such that for some v > 0

(4.7) zI, ((wEri , )- + LI,11 )z. >_ vilzr. 12, Vz 1,, J 1.

Stop if d' = 0, else continue.

Stepsize Generation zi+ 1 = z' + A'd'

where

(4.8) f(z +A'd') = min {f(z' + Adi)z' + Ad' > 0}
A

4.2 Remark The principal part of this algorithm consists of the direction generation part

(4.3), which can be performed in parallel on r processors. Once this is done the stepsize

generation (4.8) is performed and the new value z' + ' is shared between the r processors.

The following convergence results were derived in (131 for Algorithm 4.1.

4.3 Theorem (Convergence of the Parallel GP-SOR Algorithm) Let .Al be symmetric

and positive semidefinite. Either the sequence {:} generated by the Parallel GP-SOR

Algorithm 4.1 terminates at a solution of (3.1) or each of its accumulation points solves

(3.1).

4.4 Corollary (Parallel GP-SOR special cases) Condition 4.7 of Algorithm 4.1 holds

under either of the following two assumptions:

(4.9) 0 < w < min min 2

tEl,

tes
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(4.10) 0 < L., < 2, E = D- 1 and M is positive semidefinite

Our parallel augmented Lagrangian method consists of replacing the Serial SOR Al-

gorithm 3.1 by the Parallel GP-SOR Algorithm 4.1 in Algorithm 3.2 with option (4.10)

for the choice of w and E. We formally state the algorithm below.

4.5 Augmented Lagrangian Parallel SOR Algorithm

Identical to Algorithm 3.2 except that the Serial SOR Algorithm 3.1 in Algorithm 3.2

is replaced by the Parallel GP-SOR Algorithm 4.1 with condition (4.10) above in force.
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5. Computational Results

Our algorithms were tested on random linear programs which were generated as fol-

lows. First the matrix A of the linear program (2.1) was gen-rated. Each of its nonzero

elements was a random number generated by a uniform distribution on the interval r-100,

100]. The number of nonzero elements in each row was in accordance to a prescribed

deasity and the random position of each nonzero element was determined according to

a uniform distribution on the column indices of the matrix. Next a primal-dual solution

vector (x, a) was generated from a uniform distribution on the interval [0, 10] with S0%

of the components being nonzero. Finally the vectors b and c were chosen so that (i, a1)

is optimal.

In Figure 1 we give a summary of our computational results for 6 problems with the

number of constraints varying between 25,000 and 125,000 and the number of variables

varying between 100,000 and 500,000. All tests were performed on a MicroVax 1I with 16

megabytes of memory and an expanded disk swap space. We are not aware of any o.her

linear programming software that can handle problems of the size t.hat we have attempted

on a comparable machine. MINOS [15], a state-of-the-art pivotal linear programming

package, cannot handle any of the problems listed in Figure 1 because they are too big for

the machine memory using the MINOS configuration. The largest problem attempted on

the MicroVax II with MINOS was a problem with 5000 variables of 20,000 constraints and

a matrix density of 0.2% with about 200,000 nonzero elements. MINOS was used wu.h

the standard partial pricing and scaling options. After 3150 iterations and 49 hours 54

minutes of machine time, the point was infeasible and the objective function was in error

by 59% of the exact minimum. By comparison our Algorithm 3.2 solved the same problem

in 1 hour and 4 seconds with a primal-dual objective function accuracy of 7 figures, and

relative accuracy of not less than 10 - 9 as defined in Figure 1.

The Parallel SOR Algorithm 4.5 was implemented on the Sequent Balance 21000, a

multiprocessor that incorporates eight NS32032 processors running at 10MHz, each with

a floating point unit, memory management and an 8-kbyte cache sharing a global memory

via a 32-bit wide pipelined bus. The machine has 8-Mbytes of physical memory. The

operating system DYNIX, is a version of Berkeley 4.2 bsd unix. The computational results

are depicted in Figures 2 and 3.
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Figure 2 shows the total computing time versus number of processors for four different

densities: d=1, 2, 7 and 10 percent for a linear program with 1000 constraints and 4000

variables. All problems were solved to a 7-figure accuracy of the primal-dual objec:ive

function and relative accuracy better than I- as defined in Figure 1. We observe that

the optimal number of processors, that is the one that solves the prcblem in minimum

total time, increases with density as expected. This number is 3 for 1% and 2% d, nsit.s.

6 for 7% density, and 7 or more for 10% density. This means that for denser problems, a

larger number of processors is needed in order to arrive at the shortest solution time. This

also means that for denser problems, the communication cost does not become a dominant

and hence prohibitive factor until a larger number of processors are used.

In Figure 3 we show results for the case with 10,000 constraints and 40,000 variables,

with density of 0.35% and about 1,400,000 nonzero elements. To our knowledg, this is one

of the largest linear programs solved on this relatively modest sized multiprocessor. One

of the reasons that we were able to solve larger problems on the %ficroVax II, is that the

iatter had twice the total memory size of the Balance 21000 and furthermore, the MicroVax

was essentially a single-user machine dedicated to the serial SOR algorithm. The optimal

number of processors for the low-density case shown in Figure 3 is 4. Just as in the cases

of Figure 2, the optimal number of processors should increase with problem density.

We conclude with some observations on the speedup efficiency of our Parallel SOR

Algorithm 4.5. We define the speedup efficiency E(r) as the ratio of the actual to the

theoretical speedup of the algorithm using r processors instead of I processor, thus

( 5 .1 ) E ( r ) . = --

rT(r)

where T(r) is the total time for solving a given problem using r parallel processors.

Figure 4 shows the speedu? efficiencies for a typical case of a linear program with 1000

constraints, 4000 variables and 2% density. The reason why some efficiencies are over

100% was pointed out in [13]. The explanation is that our Parallel SOR Algori:hm 4.5

changes with the number of processors used, because the matrix K defined by (4.4) changes

with the number of blocks into which M is divided. Thus we are not "omparing identical

algorithms when we evaluate the ration T(1)/rT(r) of (5.1). Nevertheless the expressiY--, is

a valid measure of efficiency in the sense of comparing the theoretical reduced time T(1)/r

to the observed time T(r) for an algorithm with a variable K that depends on the partition
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of M. If the matrix K is held fixed for r = 1 and r > 1, then we obtain efficiencies for

identical algorithms, and they would all be less than 100%. This was demonstrated in

(13]. Nevertheless thp present ef.ficiencies of over 100% are indeed very encouraging and

also givt the additional and somewhat surprising result that a serial implementation o"

our r-block Parallel SOR Algorithm 4.5 on a single machine, will give for some r a better

computing time than the single block Serial SOR Algorithm 3.2. For the specific case of

Figure 4, a serial implementation of the r-block parallel SOR with r=2, 3, 4 and 5 will

be faster than the single block serial SOR.
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Total

No. No. Nonzero Nonzero Fig Accur. Log;0 Re!.
Prob. constr. var. elements elements Time Obj. Func. Accur.
No. Mx 10 - 3  

nx 10 - 3  ner row xl0 - 5 Iter hr:min P D 1 2 3 4

(a) b) c) (d) (e) f;

1 25 100 20 5 309 2:31 7 7 -7 -10 -9 -i0

2 30 120 25 7.5 392 4:34 7 7 -10 -14 -12 -14

3 40 160 20 3 363 4:56 7 7 -9 -11 -7 -S

4 50 200 16 8 525 7:47 7 7 -9 -8 -9 -8

5 100 400 12 12 967 22:35 5 7 -3 -5 -5 -7

6 125 500 9 11.25 3100 71:40 6 7 -3 -5 -5 -

(a) Number of correct figures in primal objective

(b) Number of correct figures in dual objective

\c) .(-.Z + b)+/l(b)+ , (Relative Accuracy)

(d) l(ATU C) l (__C) (Relative Accuracy)

e) cz - C/cz c± , f: exact, z: computed (Relative Accuracy)

f) ibu - bfL[/Ibu+ bi, i: exact, u: computed Relative Accuracy)

Fig. 1. MICROVAX II: Serial SOR Algorithm 3.2 test results.
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Total Tme (d .m = lOGO. n = 4000) Total Time (d =2% m 1000. n = 4C0O)

900 4000

3500
800

3000 -

'00-2500

2000
o 800/

1500 51

400 500
I 2 3 4 5 8 7 1 2 3 4 5 6 7

Number of Processors Number of Processors

Total Time (d = 7 rn. i = 1000, n = 4000) Total Time (d = 10%., = 1000. n = 4000)

50 0-"  40 000

40 000 - 3 333 ,

28 887
30O00

' 20 000
20 000 -, 3

c E 13 333

10 000 a 887

0 0[
2 3 4 5 8 1 4 5Number of Processors NI.mber .1 Processors

Fig. 2. BALANCE 21000: Total time for Parallel SOR Algorithm 4.5 to solve linear program

versus number of processors for various densities d. (Average of 4 randomly generated

cases with 1000 constraints and 4000 variables.)
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TOWa Time (d =0 357. m =10000. n =40000)

40 000

34 000-

*2 28 000-

22 000

I8 00 -O

10 000F

4 0001
1 2 3 4 5 8 7

Number of Processors

Fig. 3. BALANCE 21000: Total time for Parallel SOR Algorithm 4.5 to solve linear program

versus number of processors. (d=density, m=number of constraints, n=numnber of

variables.)
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Density d = 2%, m = 1000, n = 4000
No. Time Sec. Speedup

Processes T(r) Efficiency
r E(r) = T(-!)lrT(r)
1 3946
2 709 278%
3 638 206%
4 716 138%
5 711 111%
6 840 78%
7 850 66%

Fig. 4. BALANCE 21000M Speedup efficiency E(r) for the Parallel SOR Algorithm 4.5 for

an LP with 1000 constraints and 4000 variables and 2% density.
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